OpenClaw
OpenClaw is an open-source AI agent workspace with multi-provider support, providing developers with a complete solution for building, deploying, and managing AI agents. With OpenClaw, developers can easily create cross-platform intelligent assistants and implement complex automation tasks.
Core Features
Multi-Provider Support
- Major AI Integrations: Supports OpenAI, Anthropic, Google Gemini, DeepSeek, and other large language models
- Flexible Switching: Seamlessly switch between providers within the same project without modifying core code
- Unified Interface: Provides a unified API interface, simplifying multi-provider integration complexity
Powerful Agent Framework
- Composable Architecture: Build reusable agent capabilities through Skills and MCP (Model Context Protocol)
- Workflow Orchestration: Supports complex multi-step workflows and task orchestration
- Memory Management: Built-in long-term and short-term memory management mechanisms
Developer Toolchain
- CLI Tool: Powerful command-line tool supporting project creation, building, testing, and deployment
- Debugging: Provides detailed execution logs and debugging information
- Hot Reload: Supports code hot reloading during development for improved efficiency
Technical Architecture
Layered Design
┌─────────────────────────────────────┐
│ Agent Layer │
│ (Skills, MCPs, Memory) │
├─────────────────────────────────────┤
│ Core Layer │
│ (Orchestration, Planning) │
├─────────────────────────────────────┤
│ Provider Layer │
│ (OpenAI, Anthropic, etc.) │
├─────────────────────────────────────┤
│ Infrastructure │
│ (Storage, Network, Auth) │
└─────────────────────────────────────┘
Core Components
-
Workspace
- Project management and workspace isolation
- Configuration management and environment variables
- Plugin system extensibility
-
Agent Engine
- Task decomposition and planning
- Execution engine and state management
- Error handling and retry mechanisms
-
Skills System
- Reusable skill modules
- Standardized interface definitions
- Community sharing mechanisms
-
MCP (Model Context Protocol)
- Standardized context protocol
- Tool integration interface
- Resource access control
Use Cases
1. Enterprise Automation
- Customer service chatbots
- Document processing and analysis
- Process automation
2. Development Assistance
- Code generation and review
- Test case generation
- API documentation authoring
3. Data Analysis
- Data cleaning and transformation
- Report generation
- Visualization recommendations
4. Content Creation
- Article writing and editing
- Multi-language translation
- Marketing copy generation
Getting Started
Installation
# Install via npm
npm install -g @openclaw/cli
# Or via Homebrew (macOS)
brew install openclaw
# Verify installation
claw --version
Create a Project
# Create a new project
claw create my-agent
# Enter the project directory
cd my-agent
# Install dependencies
npm install
# Start the development server
claw dev
Configure Providers
// claw.config.ts
export default {
providers: [
{
name: 'openai',
apiKey: process.env.OPENAI_API_KEY,
model: 'gpt-4o'
},
{
name: 'anthropic',
apiKey: process.env.ANTHROPIC_API_KEY,
model: 'claude-sonnet-4-20250514'
}
],
defaultProvider: 'openai',
skills: [
'./skills/coding',
'./skills/web-search'
]
};
Create Your First Agent
// src/agent.ts
import { Agent, agent } from '@openclaw/core';
@agent('my-agent')
export class MyAgent extends Agent {
async handleTask(task: string): Promise<string> {
// Implement your agent logic
return `Processed: ${task}`;
}
}
Skills Development
OpenClaw’s Skills system lets you create reusable capability modules:
// skills/web-search/src/index.ts
import { Skill, skill } from '@openclaw/core';
@skill({
name: 'web-search',
description: 'Search the web for information',
parameters: {
query: { type: 'string', description: 'Search query' }
}
})
export class WebSearchSkill extends Skill {
async execute(query: string): Promise<string> {
// Implement search logic
return `Search results for: ${query}`;
}
}
MCP Integration
MCP (Model Context Protocol) provides a standardized way to integrate tools:
// mcps/github/src/index.ts
import { MCP, mcp } from '@openclaw/core';
@mcp({
name: 'github',
description: 'GitHub integration for repository operations',
tools: ['createIssue', 'listPRs', 'getFile']
})
export class GitHubMCP extends MCP {
// Implement GitHub operations
}
Deployment & Operations
Local Deployment
# Build the project
claw build
# Run the production build
claw start
Cloud Deployment
# Deploy to Cloudflare Workers
claw deploy --platform workers
# Deploy to Vercel
claw deploy --platform vercel
Monitoring & Logging
# View runtime logs
claw logs
# Monitor performance metrics
claw monitor
Community & Ecosystem
Official Resources
- Documentation: https://docs.openclaw.ai
- GitHub: https://github.com/openclaw/openclaw
- Discord Community: https://discord.gg/clawd
Contributing
- Issues and Pull Requests are welcome
- Improve documentation and examples
- Share your Skills and MCPs
Plugin Ecosystem
- Officially maintained core plugins
- Community-contributed extensions
- Enterprise custom solutions
Summary
As an open-source AI agent workspace, OpenClaw provides developers with a complete AI agent development platform through its flexible multi-provider support, composable Skills architecture, and powerful developer toolchain. Whether for rapid prototyping or production-grade applications, OpenClaw has you covered.